逻辑架构
逻辑架构剖析
服务器处理客户端请求
首先 MySQL 是经典的 C/S 架构,服务端程序使用的mysqld。
不论客户端进程和服务器进程是采用哪种方式进行通信,最后实现的效果是:客户端进程向服务器进程发送一段文本(SQL语句),服务器进程处理后再向客户端进程发送一段文本(处理结果)。
那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为 例展示:

下面具体展开如下:

Connectors, 指的是不同语言中与SQL的交互。MySQL首先是一个网络程序,在TCP之上定义了自己的应用层协议。所以要使用MySQL,我们可以编写代码,跟MySQL Server 建立TCP连接,之后按照其定义好的协议进行交互。或者比较方便的方法是调用SDK,比如Native C API、JDBC、PHP等各语言MySQL Connecotr,或者通过ODBC。但通过SDK来访问MySQL,本质上还是在TCP连接上通过MySQL协议跟MySQL进行交互
MySQL Service 结构可以分为如下三层:
连接层
系统(客户端)访问 MySQL 服务器前,做的第一件事就是建立 TCP 连接。 经过三次握手建立连接成功后, MySQL 服务器对 TCP 传输过来的账号密码做身份认证、权限获取。
- 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行
- 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依赖于此时读到的权限
TCP 连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。
所以连接管理的职责是负责认证、管理连接、获取权限信息。
服务层
第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成 缓存的查询,SQL的分析和优化及部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。
在该层,服务器会 解析查询 并创建相应的内部 解析树 ,并对其完成相应的 优化 :如确定查询表的顺序,是否利用索引等,最后生成相应的执行操作。
如果是SELECT语句,服务器还会 查询内部的缓存 。如果缓存空间足够大,这样在解决大量读操作的环境中能够很好的提升系统的性能。
SQL Interface: SQL接口
- 接收用户的SQL命令,并且返回用户需要查询的结果。比如SELECT ... FROM就是调用SQL Interface
- MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定 义函数等多种SQL语言接口
Parser: 解析器
- 在解析器中对 SQL 语句进行语法分析、语义分析。将SQL语句分解成数据结构,并将这个结构 传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的。如果在分解构成中遇到错 误,那么就说明这个SQL语句是不合理的。
- 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建 语法树 ,并根据数据字 典丰富查询语法树,会 验证该客户端是否具有执行该查询的权限 。创建好语法树后,MySQL还 会对SQl查询进行语法上的优化,进行查询重写。
Optimizer: 查询优化器
- SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个 执行计划 。
- 这个执行计划表明应该 使用哪些索引 进行查询(全表检索还是使用索引检索),表之间的连 接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将 查询结果返回给用户。
- 它使用“ 选取-投影-连接 ”策略进行查询。例如:
SELECT id,name FROM student WHERE gender = '女';
这个SELECT查询先根据WHERE语句进行 选取 ,而不是将表全部查询出来以后再进行gender过 滤。 这个SELECT查询先根据id和name进行属性 投影 ,而不是将属性全部取出以后再进行过 滤,将这两个查询条件 连接 起来生成最终查询结果。
- Caches & Buffers: 查询缓存组件
- MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结 果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过 程了,直接将结果反馈给客户端。
- 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等 。 这个查询缓存可以在 不同客户端之间共享 。
- 从MySQL 5.7.20开始,不推荐使用查询缓存,并在 MySQL 8.0中删除 。
引擎层
插件式存储引擎层( Storage Engines),真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样 我们可以根据自己的实际需要进行选取。
MySQL 8.0.25默认支持的存储引擎如下:

MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下:

简化为三层结构:
- 连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
- SQL 层(服务层):对 SQL 语句进行查询处理;与数据库文件的存储方式无关;
- 存储引擎层:与数据库文件打交道,负责数据的存储和读取。
SQL 执行流程

查询缓存: Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃了这个功能。
大多数情况查询缓存就是个鸡肋,为什么呢?
查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。只有
相同的查询操作才会命中查询缓存。两个查询请求在任何字符上的不同(例如:空格、注释、大小写),都会导致缓存不会命中。因此 MySQL 的查询缓存命中率不高。同时,如果查询请求中包含某些系统函数、用户自定义变量和函数、一些系统表,如 mysql 、information_schema、 performance_schema 数据库中的表,那这个请求就不会被缓存。比如函数 NOW ,每次调用都会产生最新的当前时间,如果在一个查询请求中调用了这个函数,那即使查询请求的文本信息都一样,那不同时间的两次查询也应该得到不同的结果,如果在第一次查询时就缓存了,那第二次查询的时候直接使用第一次查询的结果就是错误的!
此外,既然是缓存,那就有它 缓存失效的时候 。MySQL的缓存系统会监测涉及到的每张表,只要该表的结构或者数据被修改,如对该表使用了
INSERT、UPDATE、DELETE、TRUNCATE TABLE、ALTERTABLE、DROP TABLE或DROP DATABASE语句,那使用该表的所有高速缓存查询都将变为无效并从高速缓存中删除!对于 更新压力大的数据库 来说,查询缓存的命中率会非常低。总之,因为查询缓存往往弊大于利,查询缓存的失效非常频繁。
解析器:在解析器中对 SQL 语句进行语法分析、语义分析。

分析器先做词法分析。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面 的字符串分别是什么,代表什么。 MySQL 从你输入的 select 这个关键字识别出来,这是一个查询语 句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
接着,要做语法分析。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输 入的这个 SQL 语句是否 满足 MySQL 语法 。
如果SQL语句正确,则会生成一个这样的语法树:

优化器
主要是将解析器生成的语法树,通过MySQL的数据字典和统计信息的内容,经过一系列运算,从而得出一个执行计划树的构成。也就是说优化器的输入是一个语法树,输出是一个执行树(也称为执行计划)。通过
explain查看执行计划。在查询优化器中,可以分为
逻辑查询优化阶段和物理查询优化阶段。执行器
截止到现在,还没有真正去读写真实的表,仅仅只是产出了一个执行计划。于是就进入了 执行器阶段 。

在执行之前需要判断该用户是否 具备权限 。如果没有,就会返回权限错误。如果具备权限,就执行 SQL查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。
select * from test where id=1;
比如:表 test 中,ID 字段没有索引,那么执行器的执行流程是这样的:
TIP
调用 InnoDB 引擎接口取这个表的第一行,判断 ID 值是不是1,如果不是则跳过,如果是则将这行存在结果集中;调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。
至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。
SQL 语句在 MySQL 中的流程是: SQL语句→查询缓存→解析器→优化器→执行器 。

数据库缓冲池(buffer pool)
InnoDB 存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占 用内存来作为数据缓冲池 ,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的 Buffer Pool 之后才可以访问。
这样做的好处是可以让磁盘活动最小化,从而 减少与磁盘直接进行 I/O 的时间 。要知道,这种策略对提升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。
缓冲池
默认情况下,磁盘中存放的数据页的大小是16KB,即一页数据包含16KB的内容。 Buffer Pool中存放的一个一个的数据页,通常叫做缓存页。(Buffer Pool是一个缓冲池,里面的数据是从磁盘缓存到内存中的)
Buffer Pool中默认情况下,一个缓存页的大小和磁盘上一个数据页的大小是一一对应的,都是16KB。而Buffer Pool默认大小是 128MB

缓存原则
位置 * 频次 这个原则,可以帮我们对 I/O 访问效率进行优化。
首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。
其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200G,但是内存只有 16G,缓冲池大小只有 1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会优先对使用频次高的热数据进行加载。
预加载
数据库管理系统会把需要加载到缓冲池数据页的前后数据页一起加载到缓冲池,当我们需要查前后数据数据时会更加高效,这就是预加载的作用。上面说到缓存是有大小限制的,那么预加载的前后数据页数据如果我们没有使用到,岂不是浪费了缓存吗,常规的LRU淘汰机制会导致这样的情况,使得缓存池数据被污染,但MySQL对缓冲池做了冷热数据处理,数据第一次被加载会放入冷数据区,如果在设定时间中没有被使用,数据是不会放热数据区,在冷数据区会遵循LRU机制被淘汰。
缓冲池如何读取数据
缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面 是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。
缓存在数据库中的结构和作用如下图所示:

数据同步
如果我们执行 SQL 语句的时候更新了缓存池中的数据,那么这些数据会马上同步到磁盘上吗?
当我们对数据库中的记录进行修改的时候,首先会修改缓冲池中页里面的记录信息,然后数据库会 以一定的频率刷新到磁盘中 。注意并不是每次发生更新操作,都会立即进行磁盘回写。缓冲池会采用一种叫做 checkpoint 的机制 将数据回写到磁盘上,这样做的好处就是提升了数据库的整体性能。
比如,当缓冲池不够用时,需要释放掉一些不常用的页,此时就可以强行采用 checkpoint的方式,将不常用的脏页回写到磁盘上,然后再从缓存池中将这些页释放掉。这里的脏页 (dirty page) 指的是缓冲池中被修改过的页,与磁盘上的数据页不一致。
查看/设置缓冲池的大小
如果你使用的是 MySQL MyISAM 存储引擎,它只缓存索引,不缓存数据,对应的键缓存参数为key_buffer_size,你可以用它进行查看。
如果你使用的是 InnoDB 存储引擎,可以通过查看 innodb_buffer_pool_size 变量来查看缓冲池的大小。命令如下:
show variables like 'innodb_buffer_pool_size';

你能看到此时 InnoDB 的缓冲池大小只有 134217728Bytes = 128MB。我们可以修改缓冲池大小,比如改为256MB,方法如下
set global innodb_buffer_pool_size = 268435456;
或者:
[server]
innodb_buffer_pool_size = 268435456
多个 Buffer Pool 实例
[server]
innodb_buffer_pool_instances = 2
这样就表明我们要创建2个 Buffer Pool 实例。
我们看下如何查看缓冲池的个数,使用命令:
show variables like 'innodb_buffer_pool_instances';
那每个 Buffer Pool 实例实际占多少内存空间呢?其实使用这个公式算出来的:
innodb_buffer_pool_size/innodb_buffer_pool_instances
也就是总共的大小除以实例的个数,结果就是每个 Buffer Pool 实例占用的大小。
不过也不是说 Buffer Pool 实例创建的越多越好,分别管理各个 Buffer Pool 也是需要性能开销的,InnDB规定:当innodb_buffer_pool_size的值小于1G的时候设置多个实例是无效的,InnoDB会默认把innodb_buffer_pool_instances的值修改为1。而我们鼓励在 Buffer Pool 大于等于 1G 的时候设置多个 Buffer Pool 实例。